मराठी

Evaluate the following: d∫x2dxx4-x2-12 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`

बेरीज

उत्तर

Let I = `int (x^2"d"x)/(x^4 - x^2 - 12)`

= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`

= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`

= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

Put x2 = t for the purpose of partial fraction.

We get `"t"/(("t" - 4)("t" + 3))`

Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[where A and B are arbitrary constants]

`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`

⇒ t = At + 3A + Bt – 4B

Comparing the like terms, we get

A + B = 1 and 3A – 4B = 0

⇒ 3A = 4B

∴ A = `4/3 "B"`

Now `4/3 "B" + "B"` = 1

`7/3 "B"` = 1

∴ B = `3/7` and A = `4/3 xx 3/7 = 4/7`

So, A = `4/7` and B = `3/7`

∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

= `4/7 int 1/(x^2 - 4)  "d"x + 3/7 int 1/(x^2 + 3)  "d"x`

= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2)  "d"x`

= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1  x/sqrt(3)`

= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`

Hence, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1  x/sqrt(3) + "C"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 35 | पृष्ठ १६५

संबंधित प्रश्‍न

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int x sin2x cos5x  "d"x`


`int xcos^3x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


`int x/((x - 1)^2 (x + 2)) "d"x`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×