मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following w.r.t. x : 2logx+3x(3logx+2)[(logx)2+1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`

बेरीज

उत्तर

Let I = `int (2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]]*dx`

Put log x = t
∴ `(1)/x*dx` = dt

∴ I = `int (2t + 3)/((3t + 2)(t^2 + 1))*dt`

Let `(2t + 3)/((3t + 2)(t^2 + 1)) = "A"/(3t + 2) + "Bt + C"/(t^2 + 1)`

∴ 2t + 3 = A(t2 + 1) + (Bt + C)(3t + 2)

Put 3t + 2 = 0 i,e, t = `-(2)/(3)`, we get

`2((-2)/3) + 3 = "A"(4/9 + 1) + ((-2)/3 "B" + "C")(0)`

∴ `(5)/(3) = "A"(13/9)`

∴ A = `(15)/(13)`
Put t = 0, we get

3 = A(1) + C(2) = `(15)/(13) + 2"C"`

∴ 2C = `3 - (15)/(13) = (24)/(13)`

∴ C = `(12)/(13)`
Comparing coefficient of t2 on both the sides, we get
0 = A + 3B

∴ B = `- "A"/(3) = - (5)/(13)`

∴ `(2t + 3)/((3t + 2)(t^2 + 1)) = ((15/13))/(3t + 2) + ((-5/13t + 2/13))/(t^2 + 1)`

∴ I = `int [((15/13))/(3t + 2) + ((-5/13t + 12/3))/(t^2 + 1)]*dt`

= `(15)/(13) int 1/(3t + 2)*dt - (5)/(26) int (2t)/(t*^2 + 1)*dt + (12)/(13) int 1/(t^2 + 1)*dt`

= `(15)/(13)*(1)/(3)log|3t + 2| - (5)/(26)log|t^2 + 1| + (12)/(13)tan^-1 (t) + c`

...`[because d/dt (t^2 + 1) = 2t and int (f'(x))/f(x)dt = log|f(t)| + c]`

= `(5)/(13)log|3logx + 2| - (5)/(26)log|(logx)^2 + 1| + (12)/(13)tan^-1(logx) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.4 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.4 | Q 1.23 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×