Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/("x"("x"^5 + 1))` dx
उत्तर
Let I = `int 1/("x"("x"^5 + 1))` dx
∴ I = `int "x"^4/("x"^5("x"^5 + 1))` dx
Put x5 = t
∴ `5"x"^4 "dx" = "dt"`
∴ `"x"^4 "dx" = "dt"/5`
∴ I = `int 1/("t"("t + 1")) * "dt"/5`
Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`
∴ 1 = A(t + 1) + Bt ....(i)
Putting t = –1 in (i), we get
1 = A(0) + B(- 1)
∴ 1 = - B
∴ B = - 1
Putting t = 0 in (i), we get
1 = A(1) + B(0)
∴ A = 1
∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`
∴ I = `1/5 int (1/"t" + (-1)/"t + 1")` dt
`= 1/5 [int 1/"t" "dt" - int 1/("t + 1") "dt"]`
`= 1/5 [log |"t"| - log |"t" + 1|]` + c
`= 1/5 log |"t"/"t + 1"|` + c
∴ I = `1/5 log |"x"^5/("x"^5 + 1)|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`