Advertisements
Advertisements
प्रश्न
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
उत्तर
Let I = `int ("x"^2 + "x" − 1)/("x"^2 + "x" − 6)` dx
`= int(("x"^2 + "x" − 6) + 5)/("x"^2 + "x" − 6)` dx
`= int [("x"^2 + "x" − 6)/("x"^2 + "x" − 6) + 5/("x"^2 + "x" − 6)]` dx
`= int [1 + 5/("x"^2 + "x" − 6)]` dx
`int [1 + 5/(("x + 3")("x − 2"))]` dx
Let `5/(("x + 3")("x − 2")) = "A"/"x + 3" + "B"/"x − 2"`
∴ 5 = A(x − 2) + B(x + 3) ....(i)
Putting x = 2 in (i), we get
5 = A (0) + B (5)
∴ 5 = 5B
∴ B = 1
Putting x = − 3 in (i), we get
5 = A(− 5) + B (0)
∴ 5 = − 5A
∴ A = − 1
∴ `5/(("x + 3")("x - 2")) = (-1)/"x + 3" + 1/"x − 2"`
∴ I = `int [1 + (-1)/"x + 3" + 1/"x − 2"]` dx
`= int "dx" - int 1/"x + 3" "dx" + int1/"x − 2"` dx
∴ I = x − log |x + 3| + log |x − 2| + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int x^7/(1 + x^4)^2 "d"x`
`int sec^3x "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int x log x "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
`int 1/(x^2 + 1)^2 dx` = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`