मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

D∫sec2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int sec^3x  "d"x`

बेरीज

उत्तर

Let I = `int sec^3x  "d"x`

= `int secx * sec^3x  "d"x`

= `sec x int sec^3x  "d"x - int["d"/("d"x)(sec x) intsec^3 x  "d"x]  "d"x` 

= `secx * tanx - int secx tanx * tanx  "d"x`

= `secx * tanx - int secx tan^3x  "d"x`

= `secx * tanx - int secx(sec^3x - 1)  "d"x`

=`secx * tanx - int sec^3x  "d"x + int secx  "d"x`

∴ I = `secx * tanx - "I" + log |secx + tanx| + "c"_1`

∴ 2I  = `secxtanx + log |secx + tanx| + "c"_1`

∴ I = `1/2[secx tanx + log |secx + tanx|] + "c"` where c = `("c"_1)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Short Answers II

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sin(logx)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int x log x  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×