मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

∫5(x6+1)x2+1dx = x5 – ______ x3 + 5x + c - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c

रिकाम्या जागा भरा

उत्तर

`5/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.5: Integration - Q.2

संबंधित प्रश्‍न

Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


`int sqrt(4^x(4^x + 4))  "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int sec^3x  "d"x`


`int x^3tan^(-1)x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


`int 1/(x^2 + 1)^2 dx` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×