Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
उत्तर
Let I = `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Let `(2"x" + 1)/(("x + 1")("x - 2")) = "A"/"x + 1" + "B"/"x - 2"`
∴ 2x + 1 = A(x - 2) + B(x + 1) ....(i)
Putting x = - 1 in (i), we get
2(-1) + 1 = A(- 3) + B(0)
∴ - 1 = -3A
∴ A = `1/3`
Putting x = 2 in (i), we get
2(2) + 1 = A(0) + B(3)
∴ 5 = 3B
∴ B = `5/3`
∴ `(2"x" + 1)/(("x + 1")("x - 2")) = (1/3)/"x + 1" + (5/3)/"x - 2"`
∴ I = `int (((1/3))/"x + 1" + ((5/3))/"x - 2")` dx
∴ `1/3 int 1/"x + 1" "dx" + 5/3 int 1/"x - 2"` dx
∴ I = `1/3 log |"x" + 1| + 5/3 log |"x - 2"| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
`int sqrt(4^x(4^x + 4)) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`