Advertisements
Advertisements
प्रश्न
Evaluate `int x^2"e"^(4x) "d"x`
उत्तर
Let I = `int x^2*"e"^(4x) "d"x`
= `x^2 int "e"^(4x) "d"x - int ["d"/("d"x)(x^2) int"e"^(4x)"d"x]"d"x`
= `x^2* ("e"^(4x))/4 - int 2x* ("e"^(4x))/4 "d"x`
= `(x^2*"e"^(4x))/4 - 1/2 intx*"e"^(4x)"d"x`
= `(x^2"e"^(4x))/4 - 1/2[x"f""e"^(4x)"d"x - int("d"/("d"x)(x) int"e"^(4x)"d"x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[x* ("e"^(4x))/4 - int 1* ("e"^(4x))/4 "d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x*"e"^(4x))/4 - 1/4 int"e"^(4x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x"e"^(4x))/4 - 1/4*("e"^(4x))/4] + "c"`
= `(x^2"e"^(4x))/4 - (x"e"^(4x))/8 + ("e"^(4x))/32 + "c"`
∴ I = `("e"^(4x))/4[x^2 - x/2 + 1/8] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`