Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
पर्याय
True
False
उत्तर
True
Explanation:
Let I =`(("x - 1"))/(("x + 1")("x - 2"))` dx
Let `(("x - 1"))/(("x + 1")("x - 2")) = "A"/"x + 1" + "B"/"x - 2"`
∴ x - 1 = A(x - 2) + B(x + 1) ....(i)
Putting x = –1 in (i), we get
- 1 - 1 = A(- 1 - 2)
∴ - 2 = - 3A
∴ A = `2/3`
Putting x = 2 in (i), we get
2 - 1 = B(2 + 1)
∴ 1 = 3B
∴ B = `1/3`
∴ I = `int ((2/3)/("x + 1") + (1/3)/("x - 2"))` dx
`= 2/3 int 1/"x + 1" "dx" + 1/3 int 1/"x - 2"` dx
`= 2/3 log |"x + 1"| + 1/3 log |"x - 2"|` + c
Comparing the above with
A log |x + 1| + B log |x - 2| + c, we get
∴ A = `2/3, "B" = 1/3`
∴ A + B = `2/3 + 1/3 = 1`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`1/(x^4 - 1)`
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int xcos^3x "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int 1/(4x^2 - 20x + 17) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`