मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following w.r.t. x : 1x3-1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(1)/(x^3 - 1)`

बेरीज

उत्तर

Let I = `int (1)/(x^3 - 1)*dx`

= `int (1)/((x - 1)(x^2 + x + 1))*dx`

Let `(1)/((x - 1)(x^2 + x + 1))  = "A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`

∴ 1 = A(x2 + x + 1) + (Bx + C)(x - 1)
Put x – 1  = 0 i.e x = 1, we get
1 = A(3) + (B + C)(0)

∴ A = `(1)/(3)`
Put x = 0, we get
1 = A(1) + C(– 1)
∴ C = A – 1 = `-(2)/(3)`
Comparing the coefficients of x2 on both the sides, we get
0 = A + B
∴  B = – A = `-(1)/(3)`

∴ `(1)/((x - 1)(x^2  + x + 1)) = ((1/3))/(x - 1) + ((-1/3x - 2/3))/(x^2 + x + 1)`

= `(1)/(3)[1/(x - 1) - (x + 2)/(x^2 + x + 1)]`

Let x + 2 = `"p"[d/dx(x^2 + x + 1)] + "q"`
Comapring coefficient of x and the constant term on both the sides, we get

2p = 1 i.e. p = `(1)/(2) and p + q` = 2

∴ q = 2 – p = `2 - (1)/(2) = (3)/(2)`

∴ x + 2 =`(1)/(2)(2x + 1) + (3)/(2)`

∴ `1/((x + 1)(x^2 + x + 1)) = (1)/(3)[1/(x - 1) - ((1)/(2)(2x + 1) + 3/2)/((x^2 + x + 1))]`

= `(1)/(3)[1/(x - 1) - (1)/(2)((2x + 1)/(x^2 + x + 1)) - ((3/2))/(x^2 + x + 1)]`

∴ I = `(1)/(3) int[1/(x - 1) - (1)/(2)((2x + 1)/(x^2 + x + 1)) - ((3/2))/(x^2 + x + 1)]*dx`

= `(1)/(3) int 1/(x - 1)*dx - (1)/(6) int (2x + 1)/(x^2 + x + 1)*dx - (1)/(2) int (1)/(x^2 + x + 1/4 + 3/4)*dx`

= `(1)/(3)log|x - 1| - (1)/(6) int (d/dx(x^2 + x + 1))/(x^2 + x + 1)*dx - (1)/(2) int (1)/((x + 1/2)^2 + (sqrt(3)/2)^2)*dx`

= `(1)/(3)log|x - 1| - (1)/(6)log|x^2 + x + 1| - (1)/(2)(1)/((sqrt(3)/2))tan^-1[((x + 1/2))/((sqrt(3)/2))] + c`

= `(1)/(3)log|x - 1| - (1)/(6)log|x^2 + x + 1| - (1)/sqrt(3)tan^-1((2x + 1)/sqrt(3)) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.4 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.4 | Q 1.16 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


`int (xdx)/((x - 1)(x - 2))` equals:


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


`int x^7/(1 + x^4)^2  "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int sec^3x  "d"x`


`int sin(logx)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×