English

Integrate the following w.r.t. x : 1x3-1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `(1)/(x^3 - 1)`

Sum

Solution

Let I = `int (1)/(x^3 - 1)*dx`

= `int (1)/((x - 1)(x^2 + x + 1))*dx`

Let `(1)/((x - 1)(x^2 + x + 1))  = "A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`

∴ 1 = A(x2 + x + 1) + (Bx + C)(x - 1)
Put x – 1  = 0 i.e x = 1, we get
1 = A(3) + (B + C)(0)

∴ A = `(1)/(3)`
Put x = 0, we get
1 = A(1) + C(– 1)
∴ C = A – 1 = `-(2)/(3)`
Comparing the coefficients of x2 on both the sides, we get
0 = A + B
∴  B = – A = `-(1)/(3)`

∴ `(1)/((x - 1)(x^2  + x + 1)) = ((1/3))/(x - 1) + ((-1/3x - 2/3))/(x^2 + x + 1)`

= `(1)/(3)[1/(x - 1) - (x + 2)/(x^2 + x + 1)]`

Let x + 2 = `"p"[d/dx(x^2 + x + 1)] + "q"`
Comapring coefficient of x and the constant term on both the sides, we get

2p = 1 i.e. p = `(1)/(2) and p + q` = 2

∴ q = 2 – p = `2 - (1)/(2) = (3)/(2)`

∴ x + 2 =`(1)/(2)(2x + 1) + (3)/(2)`

∴ `1/((x + 1)(x^2 + x + 1)) = (1)/(3)[1/(x - 1) - ((1)/(2)(2x + 1) + 3/2)/((x^2 + x + 1))]`

= `(1)/(3)[1/(x - 1) - (1)/(2)((2x + 1)/(x^2 + x + 1)) - ((3/2))/(x^2 + x + 1)]`

∴ I = `(1)/(3) int[1/(x - 1) - (1)/(2)((2x + 1)/(x^2 + x + 1)) - ((3/2))/(x^2 + x + 1)]*dx`

= `(1)/(3) int 1/(x - 1)*dx - (1)/(6) int (2x + 1)/(x^2 + x + 1)*dx - (1)/(2) int (1)/(x^2 + x + 1/4 + 3/4)*dx`

= `(1)/(3)log|x - 1| - (1)/(6) int (d/dx(x^2 + x + 1))/(x^2 + x + 1)*dx - (1)/(2) int (1)/((x + 1/2)^2 + (sqrt(3)/2)^2)*dx`

= `(1)/(3)log|x - 1| - (1)/(6)log|x^2 + x + 1| - (1)/(2)(1)/((sqrt(3)/2))tan^-1[((x + 1/2))/((sqrt(3)/2))] + c`

= `(1)/(3)log|x - 1| - (1)/(6)log|x^2 + x + 1| - (1)/sqrt(3)tan^-1((2x + 1)/sqrt(3)) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.4 [Page 145]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int x^7/(1 + x^4)^2  "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int sec^3x  "d"x`


`int sin(logx)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×