Advertisements
Advertisements
Question
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Solution
Let `I = int 1/(x (x^n + 1))` dx
`= int x^(n - 1)/(x^n (x^n + 1))` dx
Put xn = t
⇒ nxn -1 dx = dt
`therefore I = 1/n dt/(t (t + 1))`
Now, `1/(t(t + 1)) = A/t + B/(t + 1)`
∴ 1 = A(t + 1) + Bt
Putting t = 0, 1 = A
∴ A = 1
Putting t = -1, 1 = -1B
∴ B = -1
`therefore 1/(t(t + 1)) = 1/t - 1/(t + 1)`
`therefore I = 1/n int dt/(t(t + 1)) = 1/n int (1/t - 1/(t + 1))` dt
`= 1/n log t - 1/n log (t + 1) + C`
`= 1/n [log t - log (t + 1)] + C`
`= 1/n log abs (t/(t + 1)) + C`
`= 1/n log abs ((x_n )/(x^n + 1)) = C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`