Advertisements
Advertisements
Question
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Solution
Let I = `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Resolving into partial fraction, we put
`(2x - 1)/((x - 1)(x + 2)(x - 3)) = "A"/(x - 1) + "B"/(x + 2) + "C"/(x - 3)`
⇒ 2x – 1 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
Put x = 1
1 = A(3)(– 2)
⇒ A = `-1/6`
Put x = – 2
– 5 = B(– 3)(– 5)
⇒ B = `- 1/3`
Put x = 3
5 = C(2)(5)
⇒ C = `1/2`
∴ `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = - 1/6 int 1/(x - 1) "d"x - 1/3 int 1/(x + 2) "d"x + 1/2 int 1/(x - 3) "d"x`
= `- 1/6 log |x - 1| - 1/3 log|x + 2| + 1/2 log|x - 3| + "C"`
= `- log|x - 1|^(1/6) - log(x + 2)^(1/3) + log(x - 3)^(1/3) + "C"`
Hence, `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = log[sqrt(x - 3)/((x - 1)^(1/6) (x + 2)^(1/3))] + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`