Advertisements
Advertisements
Question
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Solution
∴ `2/((1 - x)(1 + x^2)) = "A"/(1 - x) + ("B"x + "C")/(1 + x^2)` ...(1)
`\implies` 2 = A(1 + x2) + (Bx + C)(1 – x)
`\implies` 2 = A(1 + x2) + (– Bx2 + Bx – Cx + C)
`\implies` 2 = (A – B)x2 + (B – C)x + A + C
Equating the coefficients of like terms.
A – B = 0,
B – C = 0
and A + C = 2
On adding,
2A = 2
`\implies` A = 1
∴ B = A = 1
and C = B = 1
By (1) `2/((1 - x)(1 + x^2)) = 1/(1 - x) + (x + 1)/(1 + x^2)`
Now integrating
`int 2/((1 - x)(1 + x^2))"d"x = int 1/(1 - x)"d"x + int (x + 1)/(1 + x^2)"d"x`
= `int 1/(1 - x)"d"x + int x/(1 + x^2)"d"x + int 1/(1 + x^2)"d"x`
= `-log(1 - x) + 1/2log(1 + x^2) + tan^-1x + "C"`.
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
`int (sinx)/(sin3x) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`