Advertisements
Advertisements
Question
Evaluate:
`int (3"e"^(2x) - 2"e"^x)/("e"^(2x) + 2"e"^x - 8)"d"x`
Solution
Let I = `int (3"e"^(2x) - 2"e"^x)/("e"^(2x) + 2"e"^x - 8)"d"x`
I = `int ((3"e"^x - 2)"e"^x "d"x)/("e"^(2x) + 2"e"^x - 8)`
I = `int (3"t" - 2)/("t"^2 + 2"t" - 8)"dt"`
Put ex = t
ex dx = dt ...(1)
I = `int (3"t" - 2)/(("t" + 4)("t" - 2))"dt"` ...(1)
Now `(3"t" - 2)/(("t" + 4)("t" - 2)) = "A"/("t" + 4) + "B"/("t" - 2)` ...(2)
∴ A = `((3"t" - 2)/("t" - 2))_("t" = - 4)`
= `(3(-4) - 2)/(-4 - 2)`
= `14/6`
= `7/3`
B = `((3"t" - 2)/("t" + 4))_("t" = 2)`
= `(3 xx 2 - 2)/(2 + 4)`
= `4/6`
= `2/3`
By (2) `(3"t" - 2)/(("t" + 4)("t" - 2)) = 7/(3("t" + 4)) + 2/(3("t" - 2))`
`\implies int (3"t" - 2)/(("t" + 4)("t" - 2))"dt" = 7/3 int 1/("t" + 4)"dt" + 2/3 int 1/("t" - 2)"dt"`
`\implies` I = `7/3log("t" + 4) + 2/3log("t" - 2) + "C"`
`\implies` I = `7/3log("e"^x + 4) + 2/3log("e"^x - 2) + "C"`.