Advertisements
Advertisements
Question
Evaluate:
`int (1 + sin "x")/(1 - sin "x") "dx"`
Sum
Solution
Let I = `int (1 + sin "x")/(1 - sin "x") "dx"`
= `int (1 + sin "x")/(1 - sin "x") xx (1 + sin "x")/(1 + sin "x") "dx"`
= `int (1 + sin "x")^2/(1 - sin^2 "x") "dx"`
= `int (1 + sin^2 "x" + 2 sin "x")/(cos^2 "x")"dx"`
= `int (1/cos^2"x" + sin^2"x"/cos^2"x" + 2 sin "x"/cos^2"x") "dx"`
⇒ I = `sec^2 "x. dx" + int tan^2 "x dx" + 2 int sin "x"/cos^2"x" "dx"`
= `int sec^2 "x dx" + int (sec^2 "x" - 1)"dx" + 2 int sin "x"/cos^2"x" "dx"`
Let cos x = t,
∴ − sin x dx = dt
= `2 int sec^2 "x dx" - int 1 . "dx" - 2 int 1/"t"^2 "dt"`
= `2 tan "x" - "x" + 2/"t" + "c"`
∴ I = `2 tan"x" + 2/cos "x" - "x" + "c"`
shaalaa.com
Indefinite Integral
Is there an error in this question or solution?