Advertisements
Advertisements
Question
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Solution
Let I = `int sqrt(tanx)/(sinx*cosx)*dx`
Dividing numerator and denominator by cos2x, we get
I = `int (((sqrt(tanx))/(cos^2)))/(((sinx)/(cosx)))*dx`
= `int (sqrt(tanx)*sec^2x)/tanx*dx`
= `int (sec^2x)/sqrt(tanx)*dx`
Put tan x = t
∴ sec2x·dx = dt
∴ I = `int (1)/sqrt(t)*dt`
= `int t^(-1/2)*dt`
= `t^(1/2)/(1/2) + c`
= `2sqrt(t) + c`
= `2sqrt(tanx) + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int x^2"e"^(4x) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`