हिंदी

Integrate the following w.r.t.x : tanxsinx⋅cosx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`

योग

उत्तर

Let I = `int sqrt(tanx)/(sinx*cosx)*dx`

Dividing numerator and denominator by cos2x, we get

I = `int (((sqrt(tanx))/(cos^2)))/(((sinx)/(cosx)))*dx`

= `int (sqrt(tanx)*sec^2x)/tanx*dx`

= `int (sec^2x)/sqrt(tanx)*dx`

Put tan x = t
∴ sec2x·dx = dt

∴ I = `int (1)/sqrt(t)*dt`

= `int t^(-1/2)*dt`

= `t^(1/2)/(1/2) + c`

= `2sqrt(t) + c`

= `2sqrt(tanx) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.19 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find : `int x^2/(x^4+x^2-2) dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int x^7/(1 + x^4)^2  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x sin2x cos5x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×