Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
उत्तर
Let I = `(1)/(sinx*(3 + 2cosx))*dx`
= `int sinx/(sin^2x*(3 + 2cosx))*dx`
= `int sinx/((1 - cos^2x)(3 + 2cosx))*dx`
= `int sinx/((1 - cosx)(1 + cosx)(3 + 2cosx))*dx`
Put cos x = t
∴ – sinx.dx = dt
∴ sinx.dx = – dt
∴ I = `int (1)/((1 - t)(1 + t)(3 + 2t))*(-dt)`
= `int (-1)/((1 - t)(1 + t)(3 + 2t))*dt`
Let `(-1)/((1 - t)(1 + t)(3 + 2t)) = "A"/(1 - t) + "B"/(1 + t) + "C"/(3 + 2t)`
∴ – 1 = A(1 + t)(3 + 2t) + B(1 - t)(3 + 2t) + C(1 - t)(1 + t)
Put 1 – t = 0, i.e. t = 1, we get
– 1 = A(2)(5) + B(0)(5) + C(0)(2)
∴ – 1 = 10A
∴ A = `(-1)/(10)`
Put 1 + t = 0, i.e. t = – 1, we get
– 1 = A(0)(1) + B(2)(1) + C(2)(0)
∴ – 1 = 2B
∴ B = `-(1)/(2)`
Put 3 + 2t = 0, i.e. t = `-(3)/(2)`, we get
– 1 = `"A"(-1/2)(0) + "B"(5/2)(0) + "C"(5/2)(-1/2)`
∴ – 1 = `-(5)/(4)"C"`
∴ C = `(4)/(5)`
∴ `(-1)/((1 - t)(1 + t)(3 + 2t)) = (((-1)/(10)))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)`
∴ I = `int [(((-1)/10))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)]*dt`
= `-(1)/(10) int 1/(1 - t)*dt - (1)/(2) int 1/(1 + t)*dt + (4)/(5) int 1/(3 + 2t)*dt`
= `-(1)/(10) (log|1 - t|)/(-1) - (1)/(2) log | 1 + t| + 4/5 (log|3 + 2t|)/(2) + c`
= `(1)/(10)log|1 - cosx| - (1)/(2)log|1 + cosx| + (2)/(5)log|3 + 2cos| + c`.
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (dx)/(x(x^2 + 1))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate: `int (dx)/(2 + cos x - sin x)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`