हिंदी

Find: ∫x4(x-1)(x2+1)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int x^4/((x - 1)(x^2 + 1))dx`.

योग

उत्तर

`int x^4/((x - 1)(x^2 + 1))dx = int ((x^4 - 1 + 1))/((x - 1)(x^2 + 1))dx`

= `int ((x^4 - 1))/((x - 1)(x^2 + 1))dx + int 1/((x - 1)(x^2 + 1))dx`

= `int(x + 1)dx + int 1/((x - 1)(x^2 + 1))dx`

= `x^2/2 + x + int dx/((x - 1)(x^2 + 1))`

= `x^2/2 + x + 1/2 int (1/(x - 1) - (x + 1)/(x^2 + 1))dx`  ...{∵ Partial factorisation}

= `x^2/2 + x + 1/2[int 1/(x - 1)dx - int (xdx)/(x^2 + 1) - int dx/(1 + x^2)]` 

= `x^2/2 + x + 1/2 log(x - 1) - 1/4 log (x^2 + 1) - 1/2 tan^-1 x + C`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्न

Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


`int (xdx)/((x - 1)(x - 2))` equals:


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int 1/(4x^2 - 20x + 17)  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×