Advertisements
Advertisements
प्रश्न
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
उत्तर
`int x^4/((x - 1)(x^2 + 1))dx = int ((x^4 - 1 + 1))/((x - 1)(x^2 + 1))dx`
= `int ((x^4 - 1))/((x - 1)(x^2 + 1))dx + int 1/((x - 1)(x^2 + 1))dx`
= `int(x + 1)dx + int 1/((x - 1)(x^2 + 1))dx`
= `x^2/2 + x + int dx/((x - 1)(x^2 + 1))`
= `x^2/2 + x + 1/2 int (1/(x - 1) - (x + 1)/(x^2 + 1))dx` ...{∵ Partial factorisation}
= `x^2/2 + x + 1/2[int 1/(x - 1)dx - int (xdx)/(x^2 + 1) - int dx/(1 + x^2)]`
= `x^2/2 + x + 1/2 log(x - 1) - 1/4 log (x^2 + 1) - 1/2 tan^-1 x + C`.
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`