Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
उत्तर
Let I = `int (x + 5)/(x^3 + 3x^2 - x - 3)*dx`
= `int (x + 5)/(x^2(x + 3) - (x + 3))*dx`
= `int (x + 5)/((x + 3)(x^2 - 1)`
= `int (x + 5)/((x + 3)(x - 1)(x + 1))*dx`
∴ x2 + 2 = A(x + 2)(x + 3) + B(x – 1)(x + 3) + C(x – 1)(x + 2)
Put x – 1 = 0, i.e. x = 1, we get
1 + 2 = A(3)(4) + B(0)(4) + C(0)(3)
∴ 3 = 12A
∴ A = `(1)/(4)`
Put x + 2 = 0, i.e. x = – 2, we get
4 + 2 = A(0)(1) + B(– 3)(1) + C(– 3)(0)
∴ 6 = – 3B
∴ B = – 2
Put x + 3 = 0, i.e. x = – 3we get
9 + 2 = A(– 1)(0) + B(– 4)(0) + C(– 4)(– 1)
∴ 11 = 4C
∴ C = `(11)/(4)`
∴ `(x^2 + 2)/((x - 1)(x + 2)(x + 3)) = ((1/4))/(x - 1) + (-2)/(x + 1) + ((11/4))/(x + 3)`
∴ I = `int [((1/4))/(x - 1) + (-2)/(x + 1) + ((11/4))/(x + 3)].dx`
= `(1)/(4) int (1)/(x - 1).dx - 2 int(1)/(x + 1).dx + (11)/(4) int (1)/(x + 3).dx`
`(3)/(4)log|x - 1| - log|x + 1| + (1)/(4)log|x + 3| + c`.
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate: `int (dx)/(2 + cos x - sin x)`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`