Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
उत्तर
Let I = `int (x^2"d"x)/(x^4 - x^2 - 12)`
= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`
= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`
= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
Put x2 = t for the purpose of partial fraction.
We get `"t"/(("t" - 4)("t" + 3))`
Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[where A and B are arbitrary constants]
`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`
⇒ t = At + 3A + Bt – 4B
Comparing the like terms, we get
A + B = 1 and 3A – 4B = 0
⇒ 3A = 4B
∴ A = `4/3 "B"`
Now `4/3 "B" + "B"` = 1
`7/3 "B"` = 1
∴ B = `3/7` and A = `4/3 xx 3/7 = 4/7`
So, A = `4/7` and B = `3/7`
∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
= `4/7 int 1/(x^2 - 4) "d"x + 3/7 int 1/(x^2 + 3) "d"x`
= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2) "d"x`
= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1 x/sqrt(3)`
= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`
Hence, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`.
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(x^3 - 1)`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x log x "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`