Advertisements
Advertisements
प्रश्न
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
उत्तर
We have, `(2x^2 + 3)/(x^2(x^2 + 9))`
Now, let x2 = t
So, `(2t + 3)/(t(t + 9)) = A/t + B/(t + 9)`, we get A = `1/3` and B = `5/3`
`int (2x^2 + 3)/(x^2(x^2 + 9))dx = 1/3 int dx/x^2 + 5/3 int dx/(x^2 + 9)`
= `-1/(3x) + 5/9 tan^-1 (x/3) + c`, where 'c' is an arbitrary constant of integration.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x^3tan^(-1)x "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
`int 1/(x^2 + 1)^2 dx` = ______.