Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
उत्तर
Let `(2x - 3)/((x^2 - 1)(2x + 3))`
`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`
`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`
⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1) .... (1)
Putting x = 1 in equation (1),
2(1) - 3 = A(1 + 1)(2 + 3)
⇒ -1 = A (2) (5)
⇒ A `= -1/10`
Putting x = -1 in equation (1),
-2 -3 = B (-1 -1)(-2 + 3)
⇒ -5 = B (-2)(1)
⇒ B `= 5/2`
Putting `x = -3/2` in equation (1),
-3 -3 = C `(-3/2 -1)(-3/2 + 1)`
⇒ -6 = C `(-5/2)(-1/2)`
⇒ C =`- 6 xx 4/5 = -24/5`
`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`
`therefore int (2x - 3)/((x^2 - 1)(2x+ 3)) dx = -1/10 int 1/(x - 1) dx + 5/2 int 1/(x + 1) dx -24/5 int 1/(2x + 3) dx`
` = - 1/10 log (x - 1) + 5/2 log (x + 1) - 24/5 log ((2x + 3)/2) + C`
`= 5/2 log (x + 1) - 1/10 log (x - 1) - 12/5 log (2x+ 3) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int (sinx)/(sin3x) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`