हिंदी

Integrate the rational function: 2x-3(x2-1)(2x+3) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`

योग

उत्तर

Let `(2x - 3)/((x^2 - 1)(2x + 3))`

`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`

`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`

⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1)    .... (1)

Putting x = 1 in equation (1),

2(1) - 3 = A(1 + 1)(2 + 3)

⇒ -1 = A (2) (5)

⇒ A `= -1/10`

Putting x = -1 in equation (1),

-2 -3 = B (-1 -1)(-2 + 3)

⇒ -5 = B (-2)(1)

⇒ B `= 5/2`

Putting `x = -3/2` in equation (1),

-3 -3 = C `(-3/2 -1)(-3/2 + 1)`

⇒ -6 = C `(-5/2)(-1/2)`

⇒ C =`- 6 xx 4/5 = -24/5`

`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`

`therefore int (2x - 3)/((x^2 - 1)(2x+ 3))  dx = -1/10 int 1/(x - 1)  dx + 5/2 int 1/(x + 1)  dx -24/5 int 1/(2x + 3)  dx`

` = - 1/10  log (x - 1) + 5/2  log (x + 1) - 24/5  log ((2x + 3)/2) + C`

`= 5/2  log (x + 1) - 1/10  log (x - 1) - 12/5  log (2x+ 3) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.5 | Q 10 | पृष्ठ ३२२

संबंधित प्रश्न

Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×