Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
उत्तर
Let `(2x - 3)/((x^2 - 1)(2x + 3))`
`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`
`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`
⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1) .... (1)
Putting x = 1 in equation (1),
2(1) - 3 = A(1 + 1)(2 + 3)
⇒ -1 = A (2) (5)
⇒ A `= -1/10`
Putting x = -1 in equation (1),
-2 -3 = B (-1 -1)(-2 + 3)
⇒ -5 = B (-2)(1)
⇒ B `= 5/2`
Putting `x = -3/2` in equation (1),
-3 -3 = C `(-3/2 -1)(-3/2 + 1)`
⇒ -6 = C `(-5/2)(-1/2)`
⇒ C =`- 6 xx 4/5 = -24/5`
`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`
`therefore int (2x - 3)/((x^2 - 1)(2x+ 3)) dx = -1/10 int 1/(x - 1) dx + 5/2 int 1/(x + 1) dx -24/5 int 1/(2x + 3) dx`
` = - 1/10 log (x - 1) + 5/2 log (x + 1) - 24/5 log ((2x + 3)/2) + C`
`= 5/2 log (x + 1) - 1/10 log (x - 1) - 12/5 log (2x+ 3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`