मराठी

Integrate the rational function: 2x-3(x2-1)(2x+3) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`

बेरीज

उत्तर

Let `(2x - 3)/((x^2 - 1)(2x + 3))`

`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`

`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`

⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1)    .... (1)

Putting x = 1 in equation (1),

2(1) - 3 = A(1 + 1)(2 + 3)

⇒ -1 = A (2) (5)

⇒ A `= -1/10`

Putting x = -1 in equation (1),

-2 -3 = B (-1 -1)(-2 + 3)

⇒ -5 = B (-2)(1)

⇒ B `= 5/2`

Putting `x = -3/2` in equation (1),

-3 -3 = C `(-3/2 -1)(-3/2 + 1)`

⇒ -6 = C `(-5/2)(-1/2)`

⇒ C =`- 6 xx 4/5 = -24/5`

`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`

`therefore int (2x - 3)/((x^2 - 1)(2x+ 3))  dx = -1/10 int 1/(x - 1)  dx + 5/2 int 1/(x + 1)  dx -24/5 int 1/(2x + 3)  dx`

` = - 1/10  log (x - 1) + 5/2  log (x + 1) - 24/5  log ((2x + 3)/2) + C`

`= 5/2  log (x + 1) - 1/10  log (x - 1) - 12/5  log (2x+ 3) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 10 | पृष्ठ ३२२

संबंधित प्रश्‍न

Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int x^7/(1 + x^4)^2  "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate: `int (dx)/(2 + cos x - sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×