Advertisements
Advertisements
प्रश्न
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
पर्याय
True
False
उत्तर
This statement is false.
Explanation:
Let I =`(("x" - 1))/(("x" + 1)^3) * "e"^"x"` dx
`= int "e"^"x" [(("x" + 1) - 2)/("x"+ 1)^3]` dx
`= int "e"^"x" [1/("x" + 1)^2 - 2/("x" + 1)^3]` dx
`= int "e"^"x" [("x" + 1)^-2 - 2("x" + 1)^-3]` dx
Put f(x) = (x + 1)-2
∴ f '(x) = − 2 (x + 1)−3
∴ I = `"e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x")` + c
`= "e"^"x" * ("x + 1")^-2` + c
∴ f(x) = (x + 1)−2
संबंधित प्रश्न
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.