Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`1/(x(x^4 - 1))`
उत्तर
Let `I = int 1/ (x (x^4 - 1)) dx`
`= 1/4 int (4x^3)/(x^4(x^4 - 1)) dx`
Put x4 = t
⇒ 4x3 dx = dt
∴ `I = 1/4 int dt/(t(t - 1))`
Let `1/(t (t - 1)) = A/t + B/(t - 1)`
⇒ 1 = A (t - 1) + Bt ....(i)
Putting t = 0 in (i), we get
1 = A (-1)
⇒ A = -1
Putting t = 1 in (i), we get
1 = B (1)
⇒ B = 1
∴ `1/ (t (t - 1)) = (-1)/t + 1/ (t - 1)`
∴ `I = 1/4 int (-1/t + 1/ (t - 1)) dt`
`= 1/4 [-log |t| + log |t - 1|] + C`
`= 1/4 log |(t - 1)/t| + C`
`= 1/4 log |(x^4 - 1)/x^4| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(x^3 - 1)`
`int xcos^3x "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`