Advertisements
Advertisements
प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
उत्तर
`int x^2/(x^4+x^2-2) dx`
`=int x^2/((x2-1)(x^2+2)) dx`
`therefore x^2/((x2-1)(x^2+2)) =z/((z-1)(z+2))`
Using partial fraction, we have
`z/((z-1)(z+2))=A/(z-1)+B/(z+2)`
When z=1, A=1/3
When z=−2, B=2/3
`therefore int x^2/((x2-1)(x^2+2)) dx`
`=int (1/3)/(x^2-1^2) dx +int (2/3 )/(x^2+2)dx`
`=1/2 int 1/(x^2-1^2) dx +2/3 int (1 )/(x^2+2)dx`
`=1/3 xx 1/2 log |(x-1)/(x+1)|+2/3 xx 1/sqrt2 tan^-1 (x/sqrt2)+c`
`=1/6 log|(x-1)/(x+1)|+sqrt2/3 tan^-1(x/sqrt2)+c`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Evaluate `int x log x "d"x`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.