हिंदी

Evaluate the following: d∫x21-x4dx put x2 = t - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t

योग

उत्तर

Let I = `int x^2/(1 - x^4) "d"x`

= `int x^2/((1 - x^2)(1 + x^2)) "d"x`

Put x2 = t for the purpose of partial fractions.

We get `"t"/((1 - "t")(1 + "t"))`

Resolving into partial fractions we put

`"t"/((1 - "t")(1 + "t")) = "A"/(1 - "t") + "B"/(1 + "t")`  .....[where A and B are arbitrary constants]

⇒ `"t"/((1 - "t")(1 + "t")) = ("A"(1 + "t") + "B"(1 - "t"))/((1 - "t")(1 + "t"))`

⇒ t = A + At + B – Bt

Comparing the like terms, we get A – B = 1 and A + B = 0

Solving the above equations

We have A = `1/2` and B = `- 1/2`

∴ I = `int (1/2)/(1 - x^2) "d"x + int ((-1)/2)/(1 + x^2) "d"x`  ...(Putting t = x2)

= `1/2 * 1/(2*1) log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`

= `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + 'C"`

Hence, I = `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 19 | पृष्ठ १६४

संबंधित प्रश्न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


`int (xdx)/((x - 1)(x - 2))` equals:


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int sqrt(4^x(4^x + 4))  "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×