Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
उत्तर
Let I = `int x^2/(1 - x^4) "d"x`
= `int x^2/((1 - x^2)(1 + x^2)) "d"x`
Put x2 = t for the purpose of partial fractions.
We get `"t"/((1 - "t")(1 + "t"))`
Resolving into partial fractions we put
`"t"/((1 - "t")(1 + "t")) = "A"/(1 - "t") + "B"/(1 + "t")` .....[where A and B are arbitrary constants]
⇒ `"t"/((1 - "t")(1 + "t")) = ("A"(1 + "t") + "B"(1 - "t"))/((1 - "t")(1 + "t"))`
⇒ t = A + At + B – Bt
Comparing the like terms, we get A – B = 1 and A + B = 0
Solving the above equations
We have A = `1/2` and B = `- 1/2`
∴ I = `int (1/2)/(1 - x^2) "d"x + int ((-1)/2)/(1 + x^2) "d"x` ...(Putting t = x2)
= `1/2 * 1/(2*1) log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`
= `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + 'C"`
Hence, I = `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.