Advertisements
Advertisements
Question
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Solution
Let I = `int x^2/(1 - x^4) "d"x`
= `int x^2/((1 - x^2)(1 + x^2)) "d"x`
Put x2 = t for the purpose of partial fractions.
We get `"t"/((1 - "t")(1 + "t"))`
Resolving into partial fractions we put
`"t"/((1 - "t")(1 + "t")) = "A"/(1 - "t") + "B"/(1 + "t")` .....[where A and B are arbitrary constants]
⇒ `"t"/((1 - "t")(1 + "t")) = ("A"(1 + "t") + "B"(1 - "t"))/((1 - "t")(1 + "t"))`
⇒ t = A + At + B – Bt
Comparing the like terms, we get A – B = 1 and A + B = 0
Solving the above equations
We have A = `1/2` and B = `- 1/2`
∴ I = `int (1/2)/(1 - x^2) "d"x + int ((-1)/2)/(1 + x^2) "d"x` ...(Putting t = x2)
= `1/2 * 1/(2*1) log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`
= `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + 'C"`
Hence, I = `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int (sinx)/(sin3x) "d"x`
`int sin(logx) "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`