Advertisements
Advertisements
Question
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Solution
Let I = `int (1)/(x(1 + 4x^3 + 3x^6)).dx`
= `int x^2/(x^3(1 + 4x^3 + 3x^6)).dx`
Put x3 = t
∴ 3x2 dx = dt
∴ `x^2dx = 1/3.dt`
∴ I = `1/3 int 1/(t(1 + 4t + 3t^2)).dt`
= `1/3 int 1/(t(t + 1)(3t + 1)).dt`
Let `1/(t(t + 1)(3t + 1)) = A/t + B/(t + 1) + C/(2t + 1)`
∴ 1 = A(t + 1)(3t + 1) + Bt(3t + 1) + Ct(t + 1)
Put t = 0, we get
1 = A(1) + B(0) + C(0)
∴ A = 1
Put t + 1 = 0, i.e. t = – 1 we get
1 = A(0) + B(– 1)(– 2) + C(0)
∴ B = `1/2`
Put 3t + 1 = 0, i.e. t = `-1/3`, we get
1 = `A(0) + B(0) + C(-1/3)(2/3)`
∴ C = `-9/2`
∴ `1/(t(t + 1)(3t + 1)) = 1/t + ((1/2))/(t + 1) + ((-9/2))/(3t + 1)`
∴ I = `1/3 int[ 1/t + ((1/2))/(t + 1) + ((-9/2))/(3t + 1)].dt`
= `1/3[ int 1/t .dt + 1/2 int 1/(t + 1).dt - 9/2 int 1/(3t + 1).dt]`
= `1/3[log|t| + 1/2log|t + 1|- 9/2 . 1/3log|3t + 1|] + c`
= `1/3log|x^3| + 1/2 log|x^3 + 1| - 3/2 log|3x^3 + 1| + c`
= `log|x| + 1/2 log|x^3 + 1| - 3/2 log|3x^3 + 1| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int x^7/(1 + x^4)^2 "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int x^2"e"^(4x) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`