English

If dxabC∫dx(x+2)(x2+1)=alog|1+x2|+btan-1x+15log|x+2|+C, then ______. - Mathematics

Advertisements
Advertisements

Question

If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.

Options

  • a = `(-1)/10`, b = `(-2)/5` 

  • a = `1/10`, b = `- 2/5`

  • a = `(-1)/10`, b = `2/5`

  • a = `1/10`, b = `2/5`

MCQ
Fill in the Blanks

Solution

If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then a = `(-1)/10`, b = `2/5`.

Explanation:

Given that, `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`

Now, I = `int "dx"/((x + 2)(x^2 + 1))`

`1/((x + 2)(x^2 + 1)) = "A"/(x + 2) + ("B"x + "C")/(x^2 + 1)`

⇒ 1 = A(x2 + 1) + (Bx + C)(x + 2)

⇒ 1 = (A + B)x2 + (2B + C)x + A + 2C

Comapring coefficient, we get

A + B = 0

A + 2C = 1

2B + C = 0

Solving we get A = `1/5`

B = `- 1/5`

And C = `2/5`

∴ `int "dx"/((x + 2)(x^2 + 1))`

= `1/5 int 1/(x + 2) "d"x + int (- 1/5 + 2/5)/(x^2 + 1) "d"x`

= `1/5 int 1/(x + 2) "d"x - 1/10 int (2x)/(1 + x^2) "d"x + 1/5 int 2/(1 + x^2) "d"x`

= `1/5 log|x + 2| - 1/10 log|1 + x^2| + 2/5 tan^-1x + "C"`

= `"a" log |1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`  ....(Given)

∴ a = `(-1)/10`, b = `2/5`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 168]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 53 | Page 168

RELATED QUESTIONS

Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


`int sqrt(4^x(4^x + 4))  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×