Advertisements
Advertisements
Question
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Solution
Let I = `int (3x - 2)/((x + 1)^2(x + 3))*dx`
Let `(3x - 2)/((x + 1)^2(x + 3)) = "A"/(x + 1) + "B"/(x + 1)^2 + "C"/(x + 3)`
∴ 3x – 2 = A(x + 1)(x + 3) + B(x + 3) + C(x + 1)2
Put x + 1 = 0, i.e. x = – 1, we get
– 3 – 2 = A(0)(2) + B(2) + C(0)
∴ – 5 = 2B
∴ B = `-(5)/(2)`
Put x + 3 = 0, i.e. x - – 3, we get
– 9 – 2 = A(– 2)(0) + B(0) + C(– 2)2
∴ – 11 = 4C
∴ C = `-(11)/(4)`
Put x = 0, we get
– 2 = A(1)(3) + B(3) + C(1)
∴ – 2 = 3A + 3B + C
∴ – 2 = `3"A" - (15)/(2) - (11)/(4)`
∴ 3A = `-2 + (15)/(2) + (11)/(4)`
= `(-8 + 30 + 11)/(4)`
∴ A = `(11)/(4)`
∴ `(3x - 2)/((x + 1)^2(x + 3)) = ((11/4))/(x + 1) + ((-5/4))/(x + 1)^2 + ((-11/4))/(x + 3)`
∴ I = `int [((11/4))/(x + 1) + (((-5)/2))/(x + 1)^2 + (((-11)/4))/(x + 3)]`
= `(11)/(4) int 1/(x + 1)*dx - (5)/(2) int (x + 1)^-2*dx - (11)/(4) int 1/(x + 3)*dx`
= `(11)/(4)log|x + 1| -(5)/(2)*(x + 1)^-1/(-1)*(1)/(1)- (11)/(4)log|x + 3| + c`
= `(11)/(4)log|(x + 1)/(x + 3)| + (5)/(2(x + 1)) + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`1/(x^4 - 1)`
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int 1/(x(x^3 - 1)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`