Advertisements
Advertisements
Question
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Options
`(-1)/(x + 1) + "c"`
`((-1)/(x + 1))^5 + "c"`
log(x + 1) + c
5log(x + 5) + c
Solution
`(-1)/(x + 1) + "c"`
APPEARS IN
RELATED QUESTIONS
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`