English

Integrate the following w.r.t. x : 1sin2x+cosx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`

Sum

Solution

Let I = `int (1)/(sin2x + cosx)*dx`

= `int (1)/(cosx + 2sinx cosx)*dx`

= `int (cosxdx)/(cosx(1 + 2 sinx)`

= `int (cosx*dx)/((1-sin^2x)(1 + 2sinx)`

= `int (cos*dx)/((1 - sin^2x)(1 + 2 sinx)`

= `int (cosx*dx)/((1 + sin^2x)(1 - sin)(1 + 2sinx)`
Put cos x = t

∴ t = sin x

dt = cosxdx

∴ I = `int (dt)/((1+ t)(1 - t)(2t + 1)`

= `-int (dt)/((1 + t)(1 - t)(2t+1)`

Let `(1)/((1 + t)(1 - t)(2t + 1)) = "A"/(1 +  t) + "B"/(1 - t) + "C"/(2t+ 1)`

∴ I = A (1-t) (2t + 1) + B (1 + t) (2t + 1) +C (1+t)(1-t)
Puttingt = t= 1

1 = B(1 + 1) (2×1+1)

1 = B ×2×3

`B = 1/6`
Putting 1 – t = 0, i.e. t = – 1, we  get
1 = A(0)(– 1) + B(2)(– 1) + C(2)(0)
∴ B = `-(1)/(2)`
Putting 1 + 2t = 0, i.e. t = `-(1)/(2)`, we get

1 = A (1 + 1) (-2 + 1)

1 = A ×2 ×-1

A = `(-1)/2`

2t + 1= 0

t = `(-1/2)`

`1= C (1-1/2) (1 + 1/2)`

`1= C × 1/2×3/2`

`1 = (3C)/4`

`C = 4/3`

∴ `1/((1 - t)(1 + t)(1 + 2t)) = ((1/6))/(1 - t) + (((-1)/2))/(1 + t) + ((4/3))/(1 + 2t)`

∴ I = `int [((1/6))/(1 - t) + (((-1)/2))/(1 + t) + ((4/3))/(1 + 2t)]*dt`

= `(1)/(6) int (1)/(1 - t)*dt + 1/2 int 1/(1 + t)*dt - 4/3 int 1/(1 + 2t)*dt`

= `(1)/(6)*(log |1 - t|)/(-1) + 1/2log|1 + t| - 4/3*(log|1 + 2t|)/(2) + c`

= `(1)/(6)log|sinx + 1| + 1/2log|sinx - 1| - 2/3log|sinx 1 + 2| + c`

= `(1)/(6)log|1 - sinx| - (1)/(2)log|1 + sinx| + (2)/(3)log|1 + 2sinx| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.4 [Page 145]

APPEARS IN

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sec^3x  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int x^2"e"^(4x)  "d"x`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×