English

∫x3tan-1x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int x^3tan^(-1)x  "d"x`

Sum

Solution

Let I = `int x^3*tan^(-1)x*"d"x`

= `int (tan^-1x)x^3  "d"x`

= `(tan^-1x) int  x^3  "d"x - int["d"/("d"x) (tan^-1x) int x^3  "d"x]  "d"x`

= `(tan^-1x)*(x^4/4) - int 1/(1 + x^2)* x^4/4  "d"x`

= `x^4/4 tan^-1x + 1/4 int ((-x^4))/(1 + x^2) * "d"x`

= `x^4/4 tan^-1x + 1/4 int ((1 - x^4) - 1)/(1 + x)  "d"x`

= `x^4/4 tan^-1x + 1/4 int ((1 - x^2)(1 + x^2) - 1)/(1 + x^2)  "d"x`

= `x^4/4 tan^-1x + 1/4 int (1 - x^2 - 1/(1 + x^2))  "d"x`

= `x^4/4 tan^-1x + 1/4 (x - x^3/3 - tan^-1x) + "c"`

∴ I = `1/4 tan^-1x (x^4 - 1) - x/12 (x^2 - 3) + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int 1/(4x^2 - 20x + 17)  "d"x`


`int sec^3x  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate: `int (dx)/(2 + cos x - sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×