Advertisements
Advertisements
Question
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Solution
`int x^4/((x - 1)(x^2 + 1))dx = int ((x^4 - 1 + 1))/((x - 1)(x^2 + 1))dx`
= `int ((x^4 - 1))/((x - 1)(x^2 + 1))dx + int 1/((x - 1)(x^2 + 1))dx`
= `int(x + 1)dx + int 1/((x - 1)(x^2 + 1))dx`
= `x^2/2 + x + int dx/((x - 1)(x^2 + 1))`
= `x^2/2 + x + 1/2 int (1/(x - 1) - (x + 1)/(x^2 + 1))dx` ...{∵ Partial factorisation}
= `x^2/2 + x + 1/2[int 1/(x - 1)dx - int (xdx)/(x^2 + 1) - int dx/(1 + x^2)]`
= `x^2/2 + x + 1/2 log(x - 1) - 1/4 log (x^2 + 1) - 1/2 tan^-1 x + C`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
`int x/((x - 1)^2 (x + 2)) "d"x`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`