Advertisements
Advertisements
Question
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Solution
Let `x/((x - 1)(x - 2)(x - 3))`
`= A/(x - 1) + B/(x - 2) + C/(x - 3)`
⇒ x = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2) …(1)
Putting x = 1 in (i), we get
1 = A(1 - 2) (1 - 3)
⇒ A = `1/2`
Putting x = 2 in (i), we get
2 = B (2 - 1) (2 - 3)
⇒ B = - 2
Putting x = 3 in (i), we get
3 = C(3 - 1) (3 - 2)
⇒ C = `3/2`
`therefore x/((x - 1)(x - 2)(x - 3))`
`= 1/(2(x - 1)) - 2/(x - 2) + 3/(2(x - 3))`
`= int x/((x - 1)(x - 2)(x - 3))` dx
`= 1/2 int 1/(x - 1) dx - 2 int 1/(x - 2) dx + 3/2 int 1/(x - 3) dx`
`= 1/2 log (x - 1) - 2 log (x - 2) + 3/2 log (x - 3) + C`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`