English

Integrate the rational function: 2xx2+3x+2 - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`

Sum

Solution

Let  `(2x)/(x^2 + 3x + 2) = (2x)/((x + 1)(x + 2)`

`= A/(x + 1) + B/(x + 2)`

⇒ 2x = A(x + 2) = B (x + 1)    ... (1)

Putting x = -1 in equation (1),

2(-1) = A (-1 + 2)

⇒ -2 = A

∴ A = -2

Putting x = -2 in equation (1),

2(-2) = B (-2 + 1)

⇒ B = 4

`therefore (2x)/(x^2 + 3x + 2) = (-2)/(x + 1) + 4/(x + 4)`

`therefore int (2x)/(x^2 + 3x + 2)  dx`

`= -2 int dx /(x + 1) + 4 int dx /(x + 2)`

`= -2  log abs (x + 1) + 4  log abs (x + 2) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 5 | Page 322

RELATED QUESTIONS

Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (xdx)/((x - 1)(x - 2))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int (sinx)/(sin3x)  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int ("d"x)/(x^3 - 1)`


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


`int x/((x - 1)^2 (x + 2)) "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×