Advertisements
Advertisements
Question
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Solution
Let I = `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Let 2ex + 5 = `"A" (2"e"^x + 1) + "B" "d"/("d"x) (2"e"^x + 1)`
= 2Aex + A + B(2ex)
∴ 2ex + 5 = (2A + 2B)ex + A
Comparing the coefficients of ex and constant term on both sides,
we get 2A + 2B = 2 and A = 5
Solving these equations, we get
B = – 4
∴ I = `int(5(2"e"^x + 1) - 4(2"e"^x))/(2"e"^x + 1) "d"x`
= `5int "d"x - 4int (2"e"^x)/(2"e"^x + 1) "d"x`
∴ I = 5x – 4log|2e + 1| + c ......`[because int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Evaluate `int x log x "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`