Advertisements
Advertisements
Question
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Solution
`int x^2/(x^4+x^2-2)dx`
`=int x^2/((x^2-1)(x^2+2))dx`
`=int x^2/((x+1)(x-1)(x^2+2))dx`
Using partial fraction
`x^/((x+1)(x-1)(x^2+2))=A/(x-1)+B/(x+1)+(Cx+D)/(x^2+2)`
`=(A(x+1)(x^2+2)+B(x-1)(x^2+2)+(Cx+D)(x+1)(x-1))/((x+1)(x-1)(x^2+2))`
Equating the coefficients from both the numerators we get,
A + B + C = 0........(1)
A - B + D = 1........(2)
2A + 2B - C = 0........(3)
2A - 2B - D= 0........(4)
Solving the above equations we get,
`A=1/6, B=-1/6, C=0, D=2/3`
Our Integral becomes
`intx^/((x+1)(x-1)(x^2+2))dx=1/(6(x-1))-1/(6(x+1))+2/(3(x^2+2))dx`
`=1/6log(x-1)-1/6log(x+1)+2/3xx1/sqrt2 tan^-1 (x/sqrt2)+C`
`=1/6[log(x-1)-log(x+1)+2sqrt2tan^-1 (x/sqrt2)]+C`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`