Advertisements
Advertisements
प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
उत्तर
`int x^2/(x^4+x^2-2)dx`
`=int x^2/((x^2-1)(x^2+2))dx`
`=int x^2/((x+1)(x-1)(x^2+2))dx`
Using partial fraction
`x^/((x+1)(x-1)(x^2+2))=A/(x-1)+B/(x+1)+(Cx+D)/(x^2+2)`
`=(A(x+1)(x^2+2)+B(x-1)(x^2+2)+(Cx+D)(x+1)(x-1))/((x+1)(x-1)(x^2+2))`
Equating the coefficients from both the numerators we get,
A + B + C = 0........(1)
A - B + D = 1........(2)
2A + 2B - C = 0........(3)
2A - 2B - D= 0........(4)
Solving the above equations we get,
`A=1/6, B=-1/6, C=0, D=2/3`
Our Integral becomes
`intx^/((x+1)(x-1)(x^2+2))dx=1/(6(x-1))-1/(6(x+1))+2/(3(x^2+2))dx`
`=1/6log(x-1)-1/6log(x+1)+2/3xx1/sqrt2 tan^-1 (x/sqrt2)+C`
`=1/6[log(x-1)-log(x+1)+2sqrt2tan^-1 (x/sqrt2)]+C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`