Advertisements
Advertisements
प्रश्न
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
उत्तर
Let I = `int (x + 7)/(x^2 + 4x + 7)dx`
On applying partial integration method
`x + 7 = "A" d/dx(x^2 + 4x + 7) + "B"`
x + 7 = A(2x + 4) + B
Then, A = `1/2` and B = 5
Then, I = `int(1/2(2x + 4) + 5)/(x^2 + 4x + 7)dx`
= `1/2 int ((2x + 4))/(x^2 + 4x + 7)dx + 5 int 1/((x^2 + 4x + 7))dx`
= `1/2 log |x^2 + 4x + 7| + 5 int 1/((x + 2)^2 + (sqrt(3))^2) dx + c`
= `1/2 log |x^2 + 4x + 7| + 5/sqrt(3) tan^-1((x + 2)/sqrt(3)) + c`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`