मराठी

Evaluate: ∫x+7x2+4x+7dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`

बेरीज

उत्तर

Let I = `int (x + 7)/(x^2 + 4x + 7)dx`

On applying partial integration method

`x + 7 = "A" d/dx(x^2 + 4x + 7) + "B"`

x + 7 = A(2x + 4) + B

Then, A = `1/2` and B = 5

Then, I = `int(1/2(2x + 4) + 5)/(x^2 + 4x + 7)dx`

= `1/2 int ((2x + 4))/(x^2 + 4x + 7)dx + 5 int 1/((x^2 + 4x + 7))dx`

= `1/2 log |x^2 + 4x + 7| + 5 int 1/((x + 2)^2 + (sqrt(3))^2) dx + c`

= `1/2 log |x^2 + 4x + 7| + 5/sqrt(3) tan^-1((x + 2)/sqrt(3)) + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


`int (2x - 7)/sqrt(4x- 1) dx`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×