Advertisements
Advertisements
प्रश्न
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`
उत्तर
`int(2x^3 - 1)/(x^4 + x)dx`
Dividing both nominator and denominator by ‘x’ we get
Let `x^2 + 1/x = t`
`\implies (2x - 1/x^2)dx = dt`
= `int(2x - 1/x^2)/(x^2 + 1/x)dx`
= `int dt/t`
= `log_e|t| + c`
= `log_e|x^2 + 1/x| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int sqrt(4^x(4^x + 4)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`