Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
उत्तर
Let `(3x - 1)/((x - 1)(x - 2)(x - 3))`
`= A/(x - 1) + B/(x - 2) + C/(x - 3)`
⇒ 3x - 1 = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2) …(1)
Putting x = 1 in (i), we get
3 - 1 = A(1 - 2) (1 - 3)
⇒ 2 = A(-1) (-2)
⇒ A = 1
Putting x = 2 in (i), we get
6 - 1 = B (2 - 1) (2 - 3)
⇒ 5 = B(1) (-1)
⇒ B = -5
Putting x = 3 in (i), we get
9 - 1 = C (3 - 1) (3 - 2)
⇒ 8 = C (2) (1)
⇒ C = 4
`therefore (3x - 1)/((x - 1)(x - 2)(x - 3))`
`= 1/(x - 1) - 5/(x - 2) + 4/(x - 3)`
`= int (3x - 1)/((x - 1)(x - 2)(x - 3))` dx
`= int1/(x - 1) dx - 5 int 1/(x - 2) dx + 4 int 1/(x - 3) dx`
= log (x - 1) - 5 log (x - 2) + 4 log (x - 3) + C
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`