Advertisements
Advertisements
प्रश्न
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
उत्तर
`int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Putting ex = t and exdx = dt, we get
`int(e^x dx)/((e^x - 1)^2 (e^x + 2)) = int (dt)/((t-1)^2(t+2))`
Using partial fraction, we have
`1/((t-1)^2 (t + 1)) = A/(t-1)^2 + B/(t -1) + C/(t +2)`
⇒ 1 = A(t+2) + B(t−1)(t+2) + C(t−1)2 .....(1)
Putting t = 1 in (1), we get
`A = 1/3`
Putting t = −2 in (1), we get
C = `1/9`
Comparing the coefficients of t2 on both sides of (1), we get
B + C = 0
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int x^7/(1 + x^4)^2 "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`