हिंदी

Find Integral(E^X Dx)By((E^X - 1)Square2 (Ex + 2))` - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`

उत्तर

`int(e^x dx)/((e^x - 1)^2 (e^x + 2))`

Putting ex = t and exdx = dt, we get

`int(e^x dx)/((e^x - 1)^2 (e^x + 2)) = int (dt)/((t-1)^2(t+2))`

Using partial fraction, we have

`1/((t-1)^2 (t + 1)) = A/(t-1)^2 +  B/(t -1) + C/(t +2)`

⇒ 1 = A(t+2) + B(t−1)(t+2) + C(t−1)2 .....(1)

Putting t = 1 in (1), we get

`A = 1/3`

Putting t = −2 in (1), we get

C = `1/9`

Comparing the coefficients of t2 on both sides of (1), we get

0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 3

संबंधित प्रश्न

Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int x^7/(1 + x^4)^2  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int ("d"x)/(x^3 - 1)`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/(4x^2 - 20x + 17)  "d"x`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×