Advertisements
Advertisements
प्रश्न
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
उत्तर
Let I = `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Let `"3x - 2"/(("x + 1")^2("x + 3")) = "A"/"x + 1" + "B"/("x + 1")^2 + "C"/("x + 3")`
∴ 3x - 2 = (x + 3) [A(x + 1) + B] + C(x + 1)2 ....(i)
Putting x = - 1 in (i), we get
3(- 1) - 2 = (–1 + 3)[A(0) + B] + C(0)
∴ - 5 = 2B
∴ B = -`5/2`
Putting x = - 3 in (i), we get
3(- 3)-2 = 0[A(–3 + 1) + B] + C(–2)2
∴ - 11 = 4C
∴ C = - `11/4`
Putting x = 0 in (i), we get
3(0)- 2 = 3[A(0 + 1) + B] + C(0 + 1)2
∴ - 2 = 3A + 3B + C
∴ - 2 = 3A + 3`(- 5/2) - 11/4`
∴ 3A = –2 + `15/2 + 11/4 = (- 8 + 30 11)/4 = 33/4`
∴ A = `33/4 xx 1/3 = 11/4`
∴ `"3x - 2"/(("x + 1")^2("x + 3")) = (11/4)/"x + 1" + (- 5/2)/("x + 1")^2 + (- 11/4)/"x + 3"`
∴ I = `int ((11/4)/"x + 1" - (5/2)/("x + 1")^2 - ( 11/4)/"x + 3")` dx
`= 11/4 int "dx"/"x + 1" - 5/2 int ("x + 1")^-2 "dx" - 11/4 int "dx"/"x + 3"`
`= 11/4 log |"x + 1"| - 5/2 (- 1/"x + 1") - 11/4 log |"x + 3"|` + c
`= 11/4 [log |"x" + 1| - log |"x" + 3|] + 5/(2("x" + 1))` + c
∴ I = `11/4 log |("x + 1")/("x + 3")| + 5/(2("x + 1"))` + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int (2x - 7)/sqrt(4x- 1) dx`
`int sin(logx) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate: `int (dx)/(2 + cos x - sin x)`