हिंदी

∫dxx3-1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int ("d"x)/(x^3 - 1)`

योग

उत्तर

Let I = `int ("d"x)/(x^3 - 1)`

= `int 1/((x - 1)(x^2 + x + 1))  "d"x`

Let `1/((x - 1)(x^2 + x + 1))`

= `"A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`

∴ 1 = A(x2 + x + 1) + (Bx + C)(x – 1)  .......(i)

Putting x = 1 in (i), we get

1 = A(12 + 1 + 1)

∴ 1 = 3A

∴  A = `1/3`

Putting x = 0 in (i), we get

1 = A(0 + 0 + 1) + (0 + C)(0 – 1)

∴ 1 = A – C

∴ 1 = `1/3 - "C"`

∴ C = `- 2/3`

Putting x = 2 in (i), we get

1 = A(22 + 2 + 1) + (2B + C)(2 – 1)

∴ 1 = 7A + 2B + C

∴ 1 = `7/3  + 2"B" - 2/3` 

∴ 1 = `5/3 + 2"B"`

∴ `(-2)/(3)` = 2B

∴ B = `-1/3`

∴ I = `int ((1/3)/(x - 1) + (-1/3x - 2/3)/(x^2 + x + 1))  "d"x`

= `1/3 int(1/(x - 1) - (x + 2)/(x^2 + x + 1))  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3 int (x + 2)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3*1/2 int (2x + 4)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x  1)  "d"x - 1/6 int ((2x + 1) + 3)/(x^2 + x + 1)*  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/6 int (2x + 1)/(x^2 + x + 1)  "d"x - 1/2 int  ("d"x)/(x^2 + x + 1)`

= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/(x^2 + x + 1/4 - 1/4 + 1)`     ......`[∵  int ("f'"(x))/("f"(x))  "d"x = log|"f"(x)| + "c"]`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2 int ("d"x)/((x + 1/2)^2 + (sqrt(3)/2)^2`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2* 1/(sqrt(3)/2) tan^-1 ((x + 1/2)/(sqrt(3)/2)) + "c"`

∴ I = `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/sqrt(3) tan^-1 ((2x + 1)/sqrt(3)) + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Long Answers III

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (sinx)/(sin3x)  "d"x`


`int sin(logx)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int x^3tan^(-1)x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


Evaluate `int x log x  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×