Advertisements
Advertisements
प्रश्न
`int ("d"x)/(x^3 - 1)`
उत्तर
Let I = `int ("d"x)/(x^3 - 1)`
= `int 1/((x - 1)(x^2 + x + 1)) "d"x`
Let `1/((x - 1)(x^2 + x + 1))`
= `"A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`
∴ 1 = A(x2 + x + 1) + (Bx + C)(x – 1) .......(i)
Putting x = 1 in (i), we get
1 = A(12 + 1 + 1)
∴ 1 = 3A
∴ A = `1/3`
Putting x = 0 in (i), we get
1 = A(0 + 0 + 1) + (0 + C)(0 – 1)
∴ 1 = A – C
∴ 1 = `1/3 - "C"`
∴ C = `- 2/3`
Putting x = 2 in (i), we get
1 = A(22 + 2 + 1) + (2B + C)(2 – 1)
∴ 1 = 7A + 2B + C
∴ 1 = `7/3 + 2"B" - 2/3`
∴ 1 = `5/3 + 2"B"`
∴ `(-2)/(3)` = 2B
∴ B = `-1/3`
∴ I = `int ((1/3)/(x - 1) + (-1/3x - 2/3)/(x^2 + x + 1)) "d"x`
= `1/3 int(1/(x - 1) - (x + 2)/(x^2 + x + 1)) "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/3 int (x + 2)/(x^2 + x + 1) "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/3*1/2 int (2x + 4)/(x^2 + x + 1) "d"x`
= `1/3 int 1/(x 1) "d"x - 1/6 int ((2x + 1) + 3)/(x^2 + x + 1)* "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/6 int (2x + 1)/(x^2 + x + 1) "d"x - 1/2 int ("d"x)/(x^2 + x + 1)`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/(x^2 + x + 1/4 - 1/4 + 1)` ......`[∵ int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/((x + 1/2)^2 + (sqrt(3)/2)^2`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2* 1/(sqrt(3)/2) tan^-1 ((x + 1/2)/(sqrt(3)/2)) + "c"`
∴ I = `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/sqrt(3) tan^-1 ((2x + 1)/sqrt(3)) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sin(logx) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`