Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
उत्तर
Let I = `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Let `(2"x" + 1)/("x"("x - 1")("x - 4")) = "A"/"x" + "B"/"x - 1" + "C"/"x - 4"`
∴ 2x + 1 = A(x - 1)(x - 4) + Bx(x - 4) + Cx(x - 1) ....(i)
Putting x = 0 in (i), we get
0 + 1 = A(0 - 1)(0 - 4) + B(0)(- 4) + C(0)(- 1)
∴ 1 = 4A
∴ A = `1/4`
Putting x = 1 in (i), we get
2(1) + 1 = A(0)(-3) + B(1)(1 - 4) + C(1)(0)
∴ 3 = - 3B
∴ B = - 1
Putting x = 4 in (i), we get
2(4) + 1 = A(3)(0) + B(4)(0) + C(4)(4 - 1)
∴ 9 = C(4)(3)
∴ C = `3/4`
∴ `(2"x" + 1)/("x"("x - 1")("x - 4")) = (1/4)/"x" + (-1)/"x - 1" + (3/4)/"x - 4"`
∴ I = `int((1/4)/"x" + (-1)/("x - 1") + (3/4)/("x - 4"))` dx
`= 1/4 int 1/"x" "dx" - int 1/("x - 1") "dx" + 3/4 int 1/("x - 4")` dx
∴ I = `1/4 log |"x"| - log |"x - 1"| + 3/4 log |"x - 4"| + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int x sin2x cos5x "d"x`
`int ("d"x)/(x^3 - 1)`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`